The Fifth Risk(13)



When you set out to list the major risks inside a place with a mission as nerve-racking as the DOE’s, your mind naturally seeks to order them. One crude way that MacWilliams ordered the 150 or so risks on his final list was to plot them on a simple graph, with two axes. On one axis was “probability of an accident.” On the other axis was “consequences of an accident.” He placed risks into one of the graph’s four quadrants. A nuclear bomb exploding in an assembly plant and blowing up the Texas Panhandle: high consequence, low probability. A person hopping a perimeter security fence at one of the DOE facilities: low consequence, high probability. And so on. Mainly, he wanted to make sure the department was paying sufficient attention to the risks that fell into the graph’s most unpleasant quadrant—high probability of an accident/big consequences if it happens. He noticed that many of the risks that fell into this quadrant were giant multi-billion-dollar projects managed by the DOE. MacWilliams coined his own acronym: BAFU. Billions and All Fucked Up.

Anyway, when I had asked him for the fifth risk, he had thought about it and then seemed to relax a bit. The fifth risk did not put him at risk of revealing classified information. “Project management,” was all he said.



In December 1938, German scientists discovered uranium fission. Physicist Enrico Fermi’s report on the Germans’ work made its way to Albert Einstein, and in 1939 Einstein wrote a letter to Franklin Roosevelt. That letter is the founding document of the Department of Energy. By the early 1940s the United States government understood that for democracy to survive it needed to beat Hitler to the atom bomb. There were two ways to build such a bomb—with enriched uranium, or with plutonium. In early 1943, the United States Army was evicting everyone from an area in eastern Washington nearly half the size of Rhode Island and setting out to create enough plutonium for a nuclear bomb. The site of Hanford was chosen in part for its proximity to the Columbia River: the river supplied both cooling water, and electricity. Hanford was also chosen for its remoteness: the army was worried about both enemy attacks and an accidental nuclear explosion. And finally, Hanford was chosen for its poverty. It was convenient that what would become the world’s largest public-works project arose in a place from which people had to be paid so little to leave.

From 1943 until 1987, when Hanford closed its last reactor, the place created two-thirds of the plutonium in the United States’ arsenal. In that time, it supplied the material for seventy thousand nuclear weapons. What was left behind after the fact was just as astonishing. “Plutonium is hard to produce,” said MacWilliams. “And hard to get rid of.” By the late 1980s the state of Washington had gained some clarity on just how hard. After a long and nasty negotiation, the U.S. government promised to return Hanford to a condition where, as MacWilliams put it, “kids can eat the dirt.” More or less overnight Hanford went from the business of making plutonium to the business of cleaning it up. In its last years as a working factory, the plutonium plant employed around nine thousand people. It still employs nine thousand people, and pays them even more than it used to. “It’s a good thing that we live in a country that cares enough to take the time it will take, and spend the money it will spend, to clean up the legacy of the Cold War,” said MacWilliams. “In Russia they just drop concrete on the stuff and move on.” Asked to guess what it might cost the U.S. government to return Hanford to the standards now legally required of it, MacWilliams said, “A century and a hundred billion dollars.” And that, he thought, might be a conservative estimate.

Every year the Department of Energy wires 10 percent of its budget, or $3 billion, into this tiny place. It will likely continue to do so until the radioactive mess is cleaned up. And even though what is now called the TriCities area is well populated and amazingly prosperous—yachts on the river, $300 bottles of wine in the bistros—the absolute worst thing that could happen to it is probably not a nuclear accident. The worst thing that could happen is that the federal government loses interest in it and slashes the DOE’s budget.? And yet Trump won the county in which Hanford resides by 25 points.

One morning, with a pair of local guides, I drive into the DOE project most direly in need of management. In my lap is a book of instructions for visitors: “Report any spill or release,” it says, among other things. “Nobody in the world has waste like ours,” says one of my guides as we enter the site. No one has so much strontium 90, for instance, which behaves a lot like calcium and lodges inside the bones of any living creatures it penetrates, basically forever. Along with chromium and tritium and carbon tetrachloride and iodine 129 and the other waste products of a plutonium factory, it is already present in Hanford’s groundwater. There are other nuclear waste sites in the United States, but two-thirds of all the waste is here. Beneath Hanford, a massive underground glacier of radioactive sludge is moving slowly but relentlessly toward the Columbia River.

The place is now an eerie deconstruction site, with ghost towns on top of ghost towns. Much of the old plutonium plant still stands: the husks of the original nine reactors, built in the 1940s, still line the Columbia River, like grain elevators. Their doors have been welded shut, and they have been left to decay—for another century. “‘Cold and dark’ is a term we like to use,” says one of my guides, though he adds that rattlesnakes and other living creatures often find their way into the reactors. Of the settlement that existed before the government seized the land, there remain the stumps of trees from what were once orchards and the small stone shell of the town bank. There are older ghosts here, too. What looks like arid scrubland contains countless Indian burial grounds and other sites sacred to the tribes who lived here: the Nez Perce, the Umatilla, and the Yakama. For the 13,000 years or so prior to the white man’s arrival, the place had been theirs. To them the American experiment is no more than the blink of an eye. “You have only been here two hundred years, so you can only imagine two hundred years into the future,” as a Nez Perce spokesman put it to me. “We have been here tens of thousands of years, and we will be here forever. One day we will again eat the roots.” Maybe so. But in 2014 the DOE sent the local tribes a letter to say that, never mind the roots, they shouldn’t even eat, more than once a week, the fish they caught in the river.

Michael Lewis's Books