Are We Smart Enough to Know How Smart Animals Are?(4)



What we have here is a most sophisticated information-processing system backed by a specialized brain that turns echoes into precise perception. Griffin had followed in the footsteps of the pioneering experimentalist Karl von Frisch, who had discovered that honeybees use a waggle dance to communicate distant food locations. Von Frisch once said, “The life of the bee is like a magic well, the more you draw from it, the more there is to draw.”5 Griffin felt the same about echolocation, seeing this capacity as yet another inexhaustible source of mystery and wonder. He called it, too, a magic well.6

Since I work with chimpanzees, bonobos, and other primates, people usually don’t give me a hard time when I speak of cognition. After all, people are primates, too, and we process our surroundings in similar ways. With our stereoscopic vision, grasping hands, ability to climb and jump, and emotional communication via facial muscles, we inhabit the same Umwelt as other primates. Our children play on “monkey bars,” and we call imitation “aping,” precisely because we recognize these similarities. At the same time, we feel threatened by primates. We laugh hysterically at apes in movies and sitcoms, not because they are inherently funny—there are much funnier-looking animals, such as giraffes and ostriches—but because we like to keep our fellow primates at arm’s length. It is similar to how people in neighboring countries, who resemble each other most, joke about each other. The Dutch find nothing to laugh at in the Chinese or the Brazilians, but they relish a good joke about the Belgians.

But why stop at the primates when we are considering cognition? Every species deals flexibly with the environment and develops solutions to the problems it poses. Each one does it differently. We had better use the plural to refer to their capacities, therefore, and speak of intelligences and cognitions. This will help us avoid comparing cognition on a single scale modeled after Aristotle’s scala naturae, which runs from God, the angels, and humans at the top, downward to other mammals, birds, fish, insects, and mollusks at the bottom. Comparisons up and down this vast ladder have been a popular pastime of cognitive science, but I cannot think of a single profound insight it has yielded. All it has done is make us measure animals by human standards, thus ignoring the immense variation in organisms’ Umwelten. It seems highly unfair to ask if a squirrel can count to ten if counting is not really what a squirrel’s life is about. The squirrel is very good at retrieving hidden nuts, though, and some birds are absolute experts. The Clark’s nutcracker, in the fall, stores more than twenty thousand pine nuts, in hundreds of different locations distributed over many square miles; then in winter and spring it manages to recover the majority of them.7

That we can’t compete with squirrels and nutcrackers on this task—I even forget where I parked my car—is irrelevant, since our species does not need this kind of memory for survival the way forest animals braving a freezing winter do. We don’t need echolocation to orient ourselves in the dark; nor do we need to correct for the refraction of light between air and water as archerfish do while shooting droplets at insects above the surface. There are lots of wonderful cognitive adaptations out there that we don’t have or need. This is why ranking cognition on a single dimension is a pointless exercise. Cognitive evolution is marked by many peaks of specialization. The ecology of each species is key.

The last century has seen ever more attempts to enter the Umwelt of other species, reflected in book titles such as The Herring Gull’s World, The Soul of the Ape, How Monkeys See the World, Inside a Dog, and Anthill, in which E. O. Wilson, in his inimitable fashion, offers an ant’s-eye view of the social life and epic battles of ants.8 Following in the footsteps of Kafka and Uexküll, we are trying to get under the skin of other species, trying to understand them on their terms. And the more we succeed, the more we discover a natural landscape dotted with magic wells.


Six Blind Men and the Elephant

Cognition research is more about the possible than the impossible. Nevertheless, the scala naturae view has tempted many to conclude that animals lack certain cognitive capacities. We hear abundant claims along the lines of “only humans can do this or that,” referring to anything from looking into the future (only humans think ahead) and being concerned for others (only humans care about the well-being of others) to taking a vacation (only humans know leisure time). The last claim once had me, to my own amazement, debating a philosopher in a Dutch newspaper about the difference between a tourist tanning on the beach and a napping elephant seal. The philosopher considered the two to be radically different.

In fact, I find the best and most enduring claims about human exceptionalism to be the funny ones, such as Mark Twain’s “Man is the only animal that blushes—or needs to.” But, of course, most of these claims are deadly serious and self-congratulatory. The list goes on and on and changes every decade, yet must be treated with suspicion given how hard it is to prove a negative. The credo of experimental science remains that an absence of evidence is not evidence of absence. If we fail to find a capacity in a given species, our first thought ought to be “Did we overlook something?” And the second should be “Did our test fit the species?”

A telling illustration involves gibbons, which were once considered backward primates. Gibbons were presented with problems that required them to choose between various cups, strings, and sticks. In test after test, these primates fared poorly compared to other species. Tool use, for example, was tested by dropping a banana outside their cage and placing a stick nearby. All they had to do to get the banana was pick up the stick to move it closer. Chimpanzees will do so without hesitation, as will many manipulative monkeys. But not gibbons. This was bizarre given that gibbons (also known as “lesser apes”) belong to the same large-brained family as humans and apes.

Frans de Waal's Books