Are We Smart Enough to Know How Smart Animals Are?(18)
American psychologist Frank Beach lamented the narrow focus of behavioral science on the albino rat. His incisive critique featured a cartoon in which a Pied Piper rat is followed by a happy mass of white-coated experimental psychologists. Carrying their favorite tools—mazes and Skinner boxes—they are being led into a deep river. After S. J. Tatz in Beach (1950).
For readers who wonder about the fierce resistance to Garcia’s discovery despite the fact that most of us have firsthand experience with the power of nausea, it is good to realize that human behavior was (and still is) often seen as the product of reflection, such as an analysis of cause and effect, whereas animal behavior was supposedly free of such processes. Scientists were not ready to equate the two. Human reflection is chronically overrated, though, and we now suspect that our own reaction to food poisoning is in fact similar to that of rats. Garcia’s findings forced comparative psychology to admit that evolution pushes cognition around, adapting it to the organism’s needs. This became known as biologically prepared learning: each organism is driven to learn those things it needs to know in order to survive. This realization obviously helped the rapprochement with ethology. Moreover, the geographic distance between both schools fell away. Once comparative psychology took hold in Europe—which is how I briefly ended up in a behaviorist lab—and ethology was being taught in North American zoology departments, students on both sides of the Atlantic could absorb the entire range of views and begin to integrate them. The synthesis between the two approaches did not take place just at international meetings or in the literature, therefore, but also in the classrooms.
We entered a period of crossover scholars, which I’ll illustrate with just two examples. The first is the American psychologist Sara Shettleworth, who for most of her career taught at the University of Toronto, and who has been influential through her textbooks on animal cognition. She started out in the behaviorist corner but ended up advocating a biological approach to cognition that is sensitive to the ecological needs of each species. She remains as cautious in her interpretations of cognition as one would expect from someone of her background, yet her work gained a clear ethological flavor, which she attributes to certain professors when she was a student as well as involvement with her husband’s fieldwork on sea turtles. In an interview about her career, Shettleworth explicitly mentions Garcia’s work as a turning point that opened the eyes of her field to the evolutionary forces shaping learning and cognition.45
At the other end of the scale is one of my heroes, Hans Kummer, a Swiss primatologist and ethologist. As a student, I avidly devoured every paper he wrote, mostly his field studies on hamadryas baboons in Ethiopia. Kummer did not just observe social behavior and relate it to ecology; he always puzzled about the cognition behind it and conducted field experiments on (temporarily) captured baboons. He later moved to captive work on long-tailed macaques at the University of Zürich. Kummer felt that the only way to test cognitive theories was by means of controlled experiments. Observation alone was not going to cut it, so primatologists should become more like comparative psychologists if they ever wished to unravel the puzzle of cognition.46
I went through a similar transition from observation to experimentation and was greatly inspired by Kummer’s macaque lab when I set up my own lab for capuchin monkeys. The trick is to house the animals socially, hence build large indoor and outdoor areas, where the monkeys can spend most of the day playing, grooming, fighting, catching insects, and so on. We trained them to enter a test chamber where they could work on a touchscreen or a social task before we’d return them to the group. This arrangement had two advantages over traditional labs, which keep monkeys, rather like Skinner’s pigeons, in single cages. First of all, there is the quality of life issue. It is my personal feeling that if we are going to keep highly social animals in captivity, the very least we can do for them is permit them a group life. This is the best and most ethical way to enrich their lives and make them thrive.
Second, it makes no sense to test monkeys on social skills without giving them a chance to express these skills in daily life. They need to be completely familiar with one another for us to investigate how they share food, cooperate, or judge one another’s situation. Kummer understood all this, having started out, like myself, as a primate watcher. In my opinion, anyone who intends to conduct experiments on animal cognition should first spend a couple thousand hours observing the spontaneous behavior of the species in question. Otherwise we get experiments uninformed by natural behavior, which is precisely the approach we should be leaving behind.
Today’s evolutionary cognition is a blend of both schools, taking the best parts of each. It applies the controlled experimental methodology developed by comparative psychology combined with the blind testing that worked so well with Clever Hans, while adopting the rich evolutionary framework and observation techniques of ethology. For many young scientists, it is now immaterial whether we call them comparative psychologists or ethologists, since they integrate concepts and techniques from both. On top of this comes a third major influence, at least for work in the field. The impact of Japanese primatology is not always recognized in the West—which is why I have called it a “silent invasion”—but we routinely name individual animals and track their social careers across multiple generations. This allows us to understand the kinship ties and friendships at the core of group life. Begun by Imanishi right after World War II, this method has become standard in work on long-lived mammals, from dolphins to elephants and primates.